Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements
نویسندگان
چکیده
This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L(-1)·d(-1) of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%-62.2% higher than with NaOH-pretreatment alone and 22.2%-56.3% higher than with untreated corn stover. The best combination was obtained 5-9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production.
منابع مشابه
Enhanced Anaerobic Digestion of Food Waste by Supplementing Trace Elements: Role of Selenium (VI) and Iron (II)
This paper discusses the potential to enhance the anaerobic digestion of food waste FW by supplementing trace elements (Fe, Co, Ni, Zn, Mn, Cu, Se, and Mo) individually as well as in cocktails. A series of batch experiments on the biomethane potential of synthetic food waste were performed with low (FW-A) and high (FW-B) trace element background concentrations prepared in, respectively, Delft (...
متن کاملValorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept
BACKGROUND Due to the unsustainable consumption of fossil resources, great efforts have been made to convert lignocellulose into bioethanol and commodity organic compounds through biological methods. The conversion of cellulose is impeded by the compactness of plant cell wall matrix and crystalline structure of the native cellulose. Therefore, appropriate pretreatment and even post-treatment ar...
متن کاملPotential of Black Liquor of Potassium Hydroxide to Pretreat Corn Stover for Biomethane Production
Reducing the pretreatment cost of lignocellulosic biomass by utilizing alkali to alter its recalcitrant nature is an effective method for biofuel production. In this experiment, 1.5% KOH solution and its black liquor (spent liquor of KOH) (BL) were applied to pretreat corn stover (CS) at a temperature of 20 °C to enhance the digestibility for anaerobic digestion (AD). Results showed no signific...
متن کاملThe Impact of Bacterial Pretreatment on Corn Stover for Biogas Production
Maize is grown in large quantities for nutritional purpose; its agricultural by-product is the corn stover, which is usually unused. Because of its high abundance and high cellulose content, it is a promising substrate for biogas production. However, this cellulose-rich biomass is not used in anaerobic fermentors today, due to its insolubility. It forms a solid crust at the top of the liquid ph...
متن کاملEffects of dairy manure and corn stover co-digestion on anaerobic microbes and corresponding digestion performance.
This study investigated the effects of corn stover as a supplemental feed on anaerobic digestion of dairy manure under different hydraulic retention times (HRT). The results elucidated that both HRT and corn stover supplement significantly influenced microbial community and corresponding anaerobic digestion performance. The highest biogas production of 497 mL per gram total solid loading per da...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015